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INTRODUCTION

In arid and semi-arid regions such as North 
Africa, siltation of dams is the direct and most 
serious consequence of water erosion of wa-
tersheds. The importance of quantification and 
precise characterization of hydro-sedimentary 
transport in our rivers is very important for the 
environment and natural resources management 
(Tabatabaei et al., 2019). The preservation of land 
and water resources is one of the most important 
challenges of watershed management especially 
in arid and semi-arid areas. This phenomenon 
has many negative effects, including the signifi-
cant reduction in the storage capacity of irriga-
tion canals and the obvious deterioration of the 
water quality of dams (Gwapedza et al., 2021). 
It thus affects the structure of dams and the sup-
ply of domestic, agricultural and industrial wa-
ter (Sirabahenda et al., 2020). However, several 
meteorological and hydrographic variables in 

the Mediterranean basins have an impact on the 
sedimentation process, which makes solid load 
prediction a very complex operation (Zeyneb et 
al., 2022). The problem of sediment deposition at 
the watershed scale has led several researchers to 
project various empirical methodologies aimed at 
quantifying solid transport (Adib and Mahmoodi, 
2017). Due to its Mediterranean climate and the 
irregularity of its fluvial regime, northwest Al-
geria is one of the most vulnerable zones to soil 
erosion (Nadia and Boulemtafes, 2018). The con-
sequences of water erosion in Algeria are disas-
trous, offering a naked and crisscrossed landscape 
by an intense ravine, particularly in mountainous 
regions with a dense hydrographic network. The 
operational dams are therefore endangered, espe-
cially in the west of Algeria, where 47% of total 
land is affected (Semari and Korichi, 2023)

However, the problem is very difficult, com-
plex and far from being solved with empirical 
formulas due to the considerable difference in 
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the estimation of each formula. To overcome 
these obstacles, other new estimation methods 
must be explored. Using various water erosion 
simulation models, researchers can predict sedi-
ment levels and also vulnerable locations (de 
Vente and Poesen, 2005). Given their high po-
tential, high accuracy and ease of learning, re-
searchers are increasingly moving towards the 
use of regression and machine learning tech-
niques to predict solid flow (QS) in due to ad-
vances in computing and data science (Valentine 
and Kalnins, 2016).

Recently, machine learning techniques such as 
artificial neural network (ANN) have been wide-
ly applied in the field of hydrology for modeling 
rainfall-runoff relationships as well as water ero-
sion and bed load process. However, deep learning 
methods such as long short-term memory (LSTM) 
networks are little studied in time series predic-
tions of hydrological sequences which could cap-
ture the nonlinearity and non-stationarity related 
to hydrological applications (Hu et al., 2018). In 
this context, several studies aimed at predicting 
solid flows, particularly in Mediterranean basins, 
have been carried out, such as the Hounet wadi in 
western Algeria (Beddal et al., 2020) using both 
multilinear regression (MLR) and back-propaga-
tion neural network (BPNN) models. Their results 
have showed that the BPNN approach is more ef-
fective in modeling this nonlinear and complex 
process. To calculate the average sediment load in 
the Himalayan basins in India (Pham et al., 2018) 
have used two different algorithms; the feed-for-
ward neural network (FFNN) and the radial basic 
functions (RBF). When estimating daily sediment 
load, their investigation confirms that FFNN mod-
el has outperformed the RBF model. 

Another study conducted by (Shadkani et 
al., 2021) focused on the Mississippi River has 
showed that multi-layer perceptron-stochastic 
gradient model (MLP-SGD) exhibits superior 
predictive capabilities compared to both gradi-
ent-boosted tree (GBT) and multi-layer percep-
tron (MLP) approaches in predicting suspended 
sediment concentration. Likewise, another study 
of (Latif et al., 2023) using LSTM, support vector 
machine (SVM) and MLP models to predict sedi-
ment transport in the Johor River in Malaysia, in 
which their investigation confirms that LSTM and 
SVM approaches outperformed the MLP method. 
On the other hand (Kaveh et al., 2021) have used 
daily flow and the time series of suspended sedi-
ment (SSC) of the Schuylkill River in Manayunk, 

Philadelphia, USA to estimate the solid load. The 
LSTM technique has proven to be superior com-
pared to the FFNN and the adaptive neuro-fuzzy 
inference system (ANFIS) methods. In another 
study conducted by (Fang and Shao, 2022), the 
LSTM method has also been used to model and 
predict the rainfall–runoff relationship. It has 
showed that the LSTM produce reliable results 
and accurately predict the peak value. On a local 
scale (Zeyneb et al., 2022) carried out a study on 
five basins in eastern Algeria in which the ANN 
method has outperformed ANFIS in predicting 
suspended sediment concentrations.

Based on this literature review and our recent 
knowledge, few studies focus on the prediction 
of solid flow (QS) especially in western Algeria. 
Thus, this study examines the reliability of ma-
chine learning algorithms in predicting solid flow 
generated by the Tafna basin, located in northwest 
Algeria. The Tafna is characterized by a long pe-
riod of drought, over the previous decade namely 
between (1990–2010), in  which  annual  rainfall  
recorded  a  drop  of  around 40%  on  average  
(Meddi  et  al.,  2010),  adding the predominance  
of  silt  and  clayey-sandy  textures.  The conse-
quences of bed-load are manifested by the siltation 
of many dams located downstream of the Tafna 
basin. The prediction and the quantification of the 
solid load in the Tafna wadi become essential to 
plan protection works and hence to reduce the rate 
of siltation. The objective of the study is to high-
light the extent of water erosion of soils as well as 
the complex processes which affect the movement 
of suspended sediments in this basin, based main-
ly on data monitored through three hydrometric 
stations namely; Beni Bahdel (160402), Chouly 
Pont RN7 (160601) and Pierre de Chat (160801).

MATERIAL AND METHODS

Study area

Tafna basin is located in the north-western part 
of Algeria in the Tlemcen region between latitude 
35°.5 to 36° North and longitude 0°.5 to 2° East 
(Fig. 1). The Tafna basin shares its western border 
with Morocco. To the south, the basin is limited 
by the Tellian Atlas Mountains. To the north by 
the Mediterranean Sea. To the east by Macta and 
coastal Oranian center basins. The Tafna Wadi is 
190 km long and drains an area of 7245 km2 before 
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emptying into the Mediterranean Sea in which the 
altitude varies from zero to 1900 m.

The Tafna basin is also distinguished by a 
great spatiotemporal variability in rainfall. The 
precipitation can be three to four times higher 
in the wettest years compared to the driest years 
(Meddi et al., 2010). From a geological and 
geomorphological point of view, the study area 
shows a basin filled with Quaternary and Mio-
cene alluvium. The dynamics of the Tafna wadi 
dominate this marly basin, which is typically not 
very resistant. 

Data processing

The data used in this study were collected from 
the National Water Resources Agency (ANRH) 
through three stations (Fig. 1): Beni Bahdel ST: 
160402, Chouly Pont RN7 ST: 160601 and Pierre 
de Chat ST: 160801. The data in question are the 
daily liquid flow rates Ql (m3/s) used as input data 
for the learning process and the solid flow rates 
Qs (kg/s) as calibration data during the period 

which extends from 1990 to 2010. The normal-
ization of the series data was carried out using the 
Equation 1:

 

1 

 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛
𝑋𝑋𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛

                             (1) 

                
 

𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖 + 𝐵𝐵
𝑛𝑛

1
 (2) 

 
 

𝐹𝐹(t) = σ(𝑊𝑊𝑓𝑓[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑓𝑓) (3) 
 

𝐼𝐼(𝑡𝑡) = σ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (4) 
 

𝑂𝑂(𝑡𝑡) = σ(𝑊𝑊𝑛𝑛[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑛𝑛) (5) 
 

Î(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (6) 
 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡). 𝐶𝐶(𝑡𝑡 − 1) + 𝐼𝐼(𝑡𝑡). 𝐼𝐼(𝑡𝑡) (7) 
 

𝐻𝐻(𝑡𝑡) = 𝑂𝑂(𝑡𝑡). 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶(𝑡𝑡 − 1)) (8) 
 

 
 
 

𝑅𝑅² =
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)(𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)𝑛𝑛

1

√∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛
1 ∑ (𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)2𝑛𝑛

1
 (9) 

 

NSC = 1 −
∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)2𝑛𝑛

1
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (1)

where: Xnorm – normalized value, Xi – observed 
value, Xmin and Xmax – the minimum and 
maximum value in the series respectively.

Table 1 shows the max and min values as well 
as the standard deviation of the liquid and solid 
flow rates recorded in the three hydrometric sta-
tions in the Tafna basin. All the data constitutes a 
global model used to check the cross validation in 
the basin. On a temporal scale, a significant vari-
ability in the values of liquid flow rates has been 
observed throughout the study period from 1990 
to 2010, hence important fluctuations in daily flow 
rates in the basin are pronounced (Fig. 2). Maxi-
mum values were recorded in 1991, 1996, 2001 
and 2010 and minimum values have been reported 
in 1990, 1998, 2003 and in 2008. The interannual 

Fig. 1. Location of the Tafna basin

Table 1. Statistical characteristics of daily data

Station
Max Min Avg Standard deviation

Ql (m3/s) Qs (kg/s) Ql (m3/s) Qs (kg/s) Ql (m3/s) Qs (kg/s) Ql (m3/s) Qs (kg/s)

ST :160402 67.80 171.20 0.02 0.0 0.86 0.61 2.88 7.02

ST :160601 137.30 1172.54 0.009 0.0 01.21 4.239 05.89 37.05

ST :160801 336.88 5773.08 0.038 0.001 11.65 0.038 26.08 390.05

Global Model 336.88 5773.08 0.009 0.0 2.01 9.87 9.53 123.75
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average is approximately 6.51 (m3/s). Likewise, 
the daily solid flows recorded in the Tafna basin 
have experienced significant fluctuations during 
the study period (Fig. 2). Maximum values have 
been observed in 1990, 1991, 1996, 2000, 2004 
and 2009 with an annual average of 29.60 (kg/s), 
suggesting a significant erosive load in the Tafna 
basin. Faced with this very pronounced fluctuation 
between the min and max flow rates, which is re-
flected by the high standard deviation, it is essen-
tial to carry out a prediction analysis using both ar-
tificial intelligence and deep learning techniques.

Applied model

The prediction of solid loads in the Tafna ba-
sin is made by the application of artificial neural 
networks approach. A class of machine learning 
methods that are frequently used in data classifica-
tion and regression. We are particularly interested 
in the multilayer perceptron architecture. The con-
ventional machine learning techniques only have 
the ability to process natural data in their raw form 
without other insight information. However, Deep 
learning allows computational models that are 
composed of multiple processing layers to learn 
representations of data with multiple levels of ab-
straction. It could discover intricate structure in 
the data sets and change its internal parameters by 
using the backpropagation algorithms. However, 
to our knowledge, there are not so many studies 
using deep learning in hydrology, especially for 
large time-series datasets. The LSTM model asso-
ciated with deep learning (DL) methods use for the 
analysis of complex and voluminous data, is also 
applied to predict the solid load generated in the 
Tafna basin. Figure 3 shows the basic architecture 

and algorithm of each approach and their specific 
used parameters.

Artificial neural networks

Artificial neural network is one of the most well-
known and effective methods used to classify or re-
gress data in various scientific fields. Neural networks 
find many applications in hydrology and time series 
prediction (Kumar et al., 2012).  The MLP model 
containing ten neurons is used in this study (Fig. 4a). 
The backward propagation is selected as the activa-
tion function, and the two layers use the tansig and 
purelin transfer functions, respectively (Rahman et 
al., 2022). In addition, the observed data of each sta-
tion is divided into two parts; 70% for the training 
operation, and the remaining 30% is reserved to the 
testing phase. The model uses the following regres-
sion to calculate the output value of each layer:

 

1 
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𝑋𝑋𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛

                             (1) 

                
 

𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖 + 𝐵𝐵
𝑛𝑛

1
 (2) 

 
 

𝐹𝐹(t) = σ(𝑊𝑊𝑓𝑓[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑓𝑓) (3) 
 

𝐼𝐼(𝑡𝑡) = σ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (4) 
 

𝑂𝑂(𝑡𝑡) = σ(𝑊𝑊𝑛𝑛[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑛𝑛) (5) 
 

Î(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (6) 
 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡). 𝐶𝐶(𝑡𝑡 − 1) + 𝐼𝐼(𝑡𝑡). 𝐼𝐼(𝑡𝑡) (7) 
 

𝐻𝐻(𝑡𝑡) = 𝑂𝑂(𝑡𝑡). 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶(𝑡𝑡 − 1)) (8) 
 

 
 
 

𝑅𝑅² =
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)(𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)𝑛𝑛

1

√∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛
1 ∑ (𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)2𝑛𝑛

1
 (9) 

 

NSC = 1 −
∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)2𝑛𝑛

1
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (2)

where: Y – output value, X – input value, W – 
weight matrix, B – bias.

Long short-term memory

 The LSTM model is a Deep Learning type 
learning model that belong under the recurrent neu-
ral network (RNN) family. Due to its sophisticated 
automatically controlled loops, LSTM is the best 
model suited for data processing involving time se-
ries because it can track information over a long pe-
riod of time and create routes that allow gradients to 
drive continuously during learning phase (Bengio 
et al., 1994), (Gers et al., 2000). The LSTM model 
uses the Equations 3-8 to calculate its parameters 
and make the required predictions:

Fig. 2. Temporal variation of daily liquid flow (Ql) and solid flow (Qs) (1990–2010)
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∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (3)

 

1 

 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛
𝑋𝑋𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛

                             (1) 

                
 

𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖 + 𝐵𝐵
𝑛𝑛

1
 (2) 

 
 

𝐹𝐹(t) = σ(𝑊𝑊𝑓𝑓[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑓𝑓) (3) 
 

𝐼𝐼(𝑡𝑡) = σ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (4) 
 

𝑂𝑂(𝑡𝑡) = σ(𝑊𝑊𝑛𝑛[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑛𝑛) (5) 
 

Î(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (6) 
 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡). 𝐶𝐶(𝑡𝑡 − 1) + 𝐼𝐼(𝑡𝑡). 𝐼𝐼(𝑡𝑡) (7) 
 

𝐻𝐻(𝑡𝑡) = 𝑂𝑂(𝑡𝑡). 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶(𝑡𝑡 − 1)) (8) 
 

 
 
 

𝑅𝑅² =
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)(𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)𝑛𝑛

1

√∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛
1 ∑ (𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)2𝑛𝑛

1
 (9) 

 

NSC = 1 −
∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)2𝑛𝑛

1
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (4)

 

1 

 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛
𝑋𝑋𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛

                             (1) 

                
 

𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖 + 𝐵𝐵
𝑛𝑛

1
 (2) 

 
 

𝐹𝐹(t) = σ(𝑊𝑊𝑓𝑓[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑓𝑓) (3) 
 

𝐼𝐼(𝑡𝑡) = σ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (4) 
 

𝑂𝑂(𝑡𝑡) = σ(𝑊𝑊𝑛𝑛[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑛𝑛) (5) 
 

Î(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (6) 
 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡). 𝐶𝐶(𝑡𝑡 − 1) + 𝐼𝐼(𝑡𝑡). 𝐼𝐼(𝑡𝑡) (7) 
 

𝐻𝐻(𝑡𝑡) = 𝑂𝑂(𝑡𝑡). 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶(𝑡𝑡 − 1)) (8) 
 

 
 
 

𝑅𝑅² =
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)(𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)𝑛𝑛

1

√∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛
1 ∑ (𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)2𝑛𝑛

1
 (9) 

 

NSC = 1 −
∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)2𝑛𝑛

1
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (5)

 

1 

 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛
𝑋𝑋𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛

                             (1) 

                
 

𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖 + 𝐵𝐵
𝑛𝑛

1
 (2) 

 
 

𝐹𝐹(t) = σ(𝑊𝑊𝑓𝑓[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑓𝑓) (3) 
 

𝐼𝐼(𝑡𝑡) = σ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (4) 
 

𝑂𝑂(𝑡𝑡) = σ(𝑊𝑊𝑛𝑛[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑛𝑛) (5) 
 

Î(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (6) 
 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡). 𝐶𝐶(𝑡𝑡 − 1) + 𝐼𝐼(𝑡𝑡). 𝐼𝐼(𝑡𝑡) (7) 
 

𝐻𝐻(𝑡𝑡) = 𝑂𝑂(𝑡𝑡). 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶(𝑡𝑡 − 1)) (8) 
 

 
 
 

𝑅𝑅² =
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)(𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)𝑛𝑛

1

√∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛
1 ∑ (𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)2𝑛𝑛

1
 (9) 

 

NSC = 1 −
∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)2𝑛𝑛

1
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (6)

 

1 

 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛
𝑋𝑋𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛

                             (1) 

                
 

𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖 + 𝐵𝐵
𝑛𝑛

1
 (2) 

 
 

𝐹𝐹(t) = σ(𝑊𝑊𝑓𝑓[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑓𝑓) (3) 
 

𝐼𝐼(𝑡𝑡) = σ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (4) 
 

𝑂𝑂(𝑡𝑡) = σ(𝑊𝑊𝑛𝑛[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑛𝑛) (5) 
 

Î(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (6) 
 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡). 𝐶𝐶(𝑡𝑡 − 1) + 𝐼𝐼(𝑡𝑡). 𝐼𝐼(𝑡𝑡) (7) 
 

𝐻𝐻(𝑡𝑡) = 𝑂𝑂(𝑡𝑡). 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶(𝑡𝑡 − 1)) (8) 
 

 
 
 

𝑅𝑅² =
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)(𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)𝑛𝑛

1

√∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛
1 ∑ (𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)2𝑛𝑛

1
 (9) 

 

NSC = 1 −
∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)2𝑛𝑛

1
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (7)

 

1 

 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛
𝑋𝑋𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛

                             (1) 

                
 

𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖 + 𝐵𝐵
𝑛𝑛

1
 (2) 

 
 

𝐹𝐹(t) = σ(𝑊𝑊𝑓𝑓[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑓𝑓) (3) 
 

𝐼𝐼(𝑡𝑡) = σ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (4) 
 

𝑂𝑂(𝑡𝑡) = σ(𝑊𝑊𝑛𝑛[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑛𝑛) (5) 
 

Î(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖[𝐻𝐻(𝑡𝑡 − 1), 𝑋𝑋(𝑡𝑡)] + 𝐵𝐵𝑖𝑖) (6) 
 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡). 𝐶𝐶(𝑡𝑡 − 1) + 𝐼𝐼(𝑡𝑡). 𝐼𝐼(𝑡𝑡) (7) 
 

𝐻𝐻(𝑡𝑡) = 𝑂𝑂(𝑡𝑡). 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶(𝑡𝑡 − 1)) (8) 
 

 
 
 

𝑅𝑅² =
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)(𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)𝑛𝑛

1

√∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛
1 ∑ (𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛 − 𝑋𝑋𝑜𝑜𝑛𝑛)2𝑛𝑛

1
 (9) 

 

NSC = 1 −
∑ ( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)2𝑛𝑛

1
∑ (𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛)2𝑛𝑛

1
 

(10) 

RMSE = √∑
( 𝑋𝑋𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛)

𝑁𝑁

𝑁𝑁

1
 

(11) 

 

 (8)

where: H(t) – hidden state, X(t) – input data. H(t-
1) – previous hidden state, I(t) – front 
door, I(t) – determines whether to pass 
the X(t) and the previous hidden state H(t-
1), C(t) – state cell, F(t) – forgotten door., 
O(t) – exit door, σ(.) – activation function, 
W – weight matrix, B – bias. tanh (⋅) – hy-
perbolic tangent function.

The LSTM model regulate automatically in-
formation updates in the cell state (Fig. 4b). The 
forget gate F(t) manages the input data X(t) and 

the previous hidden state H(t-1) connection to the 
cell state C(t), which allows to determine wheth-
er to forget X(t) and H(t-1). The input gates I(t) 
and Î(t) determine whether to pass the X(t) and 
the previous hidden state H(t-1), processed by the 
activation function σ, to the cell state C(t). The 
output gate O(t) controls whether to send the pro-
cessed X(t) and the previous hidden state H(t-1) to 
the next hidden state H(t) (Fan et al., 2023).

RESULTS AND DISCUSSION

The validation of the simulated results with 
those recorded in the three hydrometric stations 
was controlled by several criteria such as: determi-
nation coefficient (R2), Nash-Sutcliffe coefficient 
(NSC), root mean square error (RMSE), namely:

 

1 
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Fig. 3. Flowchart of the developed methodology
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where: Xobs – observed value, Xsim – simulated 
value, Xom – average of observed values, 
Xsm – average of simulated values.

Through which we select the most appropri-
ate model to predict the solid loads in the Tafna 
basin. The calculated solid flows Qs provide use-
ful information on the effectiveness and perfor-
mance of these models through the training (TR) 
and testing (TS) phases.

ST: Beni Bahdel (160402)

In this station the learning results show a slight 
superior performance of the ANN model com-
pared to the LSTM model which gave impressive 
metrics (Table 2); R2: 0.66–0.98, NSC: 0.77–0.80, 
and in particular low RMSE which vary between: 
0.0096–0.02. Comparing with the other stations, 
both ANN and LSTM models indicate a better cor-
relation with the station (160801) (Fig. 5). 

ST: Chouly Pont RN7 (160601)

In the Chouly station (160601), the simula-
tion results (Table 3) indicate a superior perfor-
mance of the LSTM model compared to the ANN 
model according to correlation indicators such as; 
R2: 0.5–0.86, NSC: 0.11–0.17, and in particular 
low errors such as RMSE which varied between 
0.033–0.018. In terms of cross validation process, 
the ANN model indicates a very good correlation 
with station 160801 from which we record the 
lowest error of 0.0174 (Fig. 6).

ST: Pierre de Chat (160801) 

According to the simulation results applied 
to the Pierre de Chat station (160801), the ANN 
model indicates superior performance compared to 
the LSTM model (Table 4). The correlation param-
eters confirm it; R2: 0.70–0.98, NSC: 0.83–0.84, 
RMSE: 0.0168–0.027. The best value is recorded 
in the CV model with the station (160601), with 
high value of R² = 0.98, and NSC = 0.85, the errors 
are also very low, estimated at 0.0096 (Fig. 7).

Global model 

The global analysis which groups together all 
hydrometric stations shows superior performance 

Fig. 4. Structure of both models (a) ANN, (b) LSTM

Table 2. Performance indicators of the ANN and LSTM models of ST: 160402
Stations ST: 160402

Parameters R² NSC RMSE

Model ANN LSTM ANN LSTM ANN LSTM

ST :160402

TR 0.92 0.86 0.80 0.74 0.0200 0.0265

TS 0.66 0.50 0.77 0.75 0.0098 0.0126

ALL 0.98 0.88 0.80 0.68 0.0174 0.0117

CV.ST :160601 ALL 0.97 0.67 0.79 0.44 0.0096 0.0189

CV.ST :160801 ALL 0.98 0.77 0.80 0.63 0.0196 0.0357

CV. Global model ALL 0.97 0.86 0.80 0.63 0.0165 0.0223



281

Ecological Engineering & Environmental Technology 2024, 25(3), 275–286

of the ANN model compared to the LSTM 
model. The performance parameters show (R2: 
0.55–0.98, NSC: 0.25–0.95 and RMSE: 0.0078–
0.0318) (Table 5). The best value is recorded in 
the CV model with the both stations 160402 and 
160601, from which low errors are recorded re-
spectively (RMSE: 0.008–0.005) (Fig. 8).

The ANN model appears to be the best ef-
ficient choice, with a slight advantage over the 
LSTM model. This does not affect the credibil-
ity, reliability and effectiveness of LSTM model. 
It is obvious that the both models considered in 

this study are viable and efficient, proving their 
applicability to predict the rate of solid loads in 
particular and hydrological phenomena in general 
in the Tafna basin. It should be noted that the  in-
tensity  of  water  erosion  depends  on  several  
climatic conditions such as the rains erosivity, the 
slope which acts directly on the kinetic energy of 
the runoff, the cover land which  absorbs  the  en-
ergy  kinetics  of  the  raindrops  and increases  the  
soil  resistance  against  erosion,  and  finally soil 
erodibility which is closely related to the texture 
and soil structure. 

Fig. 5. Simulated vs observed solid flows in ST: 160402 using (a) ANN (b) LSTM
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Table 3. Performance indicators of the ANN and LSTM models of ST: 160601
Stations ST: 160601

Parameters R² NSC RMSE

Model ANN LSTM ANN LSTM ANN LSTM

ST :160601

TR 0.30 0.86 -1.3 0.17 0.0300 0.0180

TS 0.22 0.50 -1.4 0.11 0.0469 0.0334

ALL 0.94 0.88 0.86 0.28 0.0095 0.0214

CV.ST :160402 ALL 0.94 0.67 0.83 0.29 0.0185 0.0363

CV.ST :160801 ALL 0.95 0.77 0.88 0.28 0.0174 0.0457

CV. Global Model ALL 0.94 0.86 0.75 0.29 0.0185 0.0312

Fig. 6. Simulated vs observed solid flows in ST: 160601 using (a) ANN (b) LSTM 
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Table 4. Performance indicators of the ANN and LSTM models of ST: 160801
Stations ST: 160801

Parameters R² NSC RMSE

Model ANN LSTM ANN LSTM ANN LSTM

ST :160801

TR 0.91 0.70 0.83 0.58 0.0274 0.0404

TS 0.70 0.35 0.81 -0.15 0.0168 0.0254

ALL 0.98 0.85 0.84 0.67 0.0196 0.0310

CV.ST :160402 ALL 0.98 0.89 0.85 0.65 0.0174 0.0247

CV.ST :160601 ALL 0.98 0.77 0.85 0.50 0.0096 0.0179

CV. Global Model ALL 0.97 0.88 0.80 0.65 0.0165 0.0219

Fig. 7. Simulated vs observed solid flows in ST: 160801 using (a) ANN (b) LSTM
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Table 5. Performance indicators of the ANN and LSTM models of the Global Model
Stations Global Model

Parameters R² NSC RMSE

Model ANN LSTM ANN LSTM ANN LSTM

Model Global

TR 0.86 0.82 0.52 0.67 0.0254 0.0211

TS 0.55 0.46 0.25 0.22 0.0318 0.0336

ALL 0.98 0.87 0.95 0.68 0.0078 0.0209

ST :160402 ALL 0.98 0.90 0.96 0.68 0.0080 0.0228

ST :160601 ALL 0.98 0.71 0.95 0.58 0.0053 0.0180

ST :160801 ALL 0.98 0.79 0.95 0.65 0.0104 0.0340

Fig. 8. Simulated vs observed solid flows in the Global Model using (a) ANN (b) LSTM
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CONCLUSION 

In this study one has applied two artificial 
intelligence models, namely ANN, LSTM to 
simulate the solid flow generated in the Tafna 
basin situated in northwest Algeria. Like all 
semi-arid regions, this basin suffers from many 
problems linked to water erosion such as rapid 
siltation of dams. The used data represent the 
recordings solid flows in three hydrometric sta-
tions of Beni Bahdel (160402), Chouly Pont 
RN7 (160601) and Pierre de Chat (160801). To 
perceive the correlation between these stations, 
we added a global model which groups all the 
solid flow data from the stations in the learning 
process. Before training, the database is pro-
cessed and normalized to ensure the validity 
and the accuracy of the results. 

The comparison of the simulated solid flow 
rates and those recorded has been controlled 
and verified by three performance parameters 
such as; the correlation coefficient R2, the Nash 
parameter NSC and the root mean square error 
RMSE. The simulation is carried out separately 
by isolating each hydrometric station and glob-
ally for the entire Tafna basin. The performanc-
es of the two models are of a comparable level 
and indicate that the ANN model is slightly 
better compared to the LSTM model. Overall, 
the simulated results underline the excellence 
of both models in terms of validation criteria 
and confirm its relevance for predicting solid 
flow rates Qs using observed liquid flow Ql. 
This can help in planning effective solutions to 
reduce erosion and ensure the sustainability of 
hydrotechnical structures.

This study emphasizes the usefulness of 
the machine and deep learning models used 
to control the relationship between the factors 
amplifying water erosion, particularly in arid 
and semi-arid Mediterranean basins. Despite 
the promising results of these models, it is im-
portant to recognize the problems in predicting 
values for various systems, especially when 
dealing with instantaneous data. The model-
ing of solid load remains an investigation sub-
ject given the complexity of natural phenom-
ena and the non-linearity of the relationships 
between the intervening variables namely the 
rains erosivity, the slope, the cover land,  and  
soil erodibility. However, the use of artificial 
intelligence models is still part of the decision-
making tools.
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